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1. Introduction

String vacua with magnetic fields along the extra dimensions (‘flux compactifications’) have

been intensively studied in recent years (see [2] for a recent review). One reason for their

relevance is that, since the flux contribution to the energy depends on the geometrical

moduli of the internal manifold, it gives them a four dimensional effective potential and

can thus stabilize some or all of them, lifting undesired massless fields [3 – 9].

Type IIA flux vacua are perhaps the best understood amongst flux vacua (see [1, 10 –

13] and references therein). This is because all the moduli are stabilised classically i.e. the

effective moduli potential generated by the tree level supergravity action in ten dimensions

(supplemented with orientifold 6-plane sources) has stable isolated critical points. This has

been demonstrated in detail in [1].

Specifically, if we consider Type IIA theory on a Calabi-Yau threefold, switching on

the RR fluxes gives rise to a potential which depends on the Kähler moduli. In order to

stabilise the complex structure moduli one can introduce NSNS 3-form flux, H, however

this leads to a tadpole for the D6-brane charge, which can be cancelled by introducing

orientifold six-planes (O6). The full system of fluxes and O6-planes then stabilises all the

moduli, essentially at leading order in α′ and gs.

In particular, de Wolfe et al. [1] have described the effective 4d potential for the moduli

in the large volume limit, when the backreaction of the fluxes on Einstein’s equations can
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be ignored (since their contribution to the stress tensor is volume suppressed). This class

of vacua is an excellent arena to study aspects of moduli stabilisation in detail, since the

vacua are essentially classical solutions of ten dimensional IIA supergravity. However, until

now, very little is known about what these ten dimensional solutions look like, since most

of the prior studies have used the effective four dimensional description. The purpose of

this paper is thus to fill this gap.

The basic questions we will ask are: does the ten dimensional solution actually exist

(i.e. is the four dimensional description valid)? If so, what, precisely, is the backreaction

of the fluxes and how does it modify the Ricci flat Calabi-Yau metric? Can we understand

moduli stabilisation from a ten dimensional perspective?

Our main results can be summarised as follows: we prove that the exact ten dimen-

sional solution is not Calabi-Yau. The precise modification of the Calabi-Yau geometry

can be described by a particular type of half-flat SU(3) structure [14]. Notably, they ap-

pear in the mirror-symmetric picture of ‘Calabi-Yau with fluxes’ compactifications [15, 16].

Though we were unable to find the full solution (for which we will have to await further de-

velopments in the mathematical literature), in the approximation that the O6-plane source

is smoothed out, we found an exact solution. This solution is Calabi-Yau and by studying

the moduli stabilization from the ten dimensional point of view, we found the same results

as [1].

The paper is organized as follows. In section 2 we shortly review a class of solutions of

Type IIA supergravity found in [17] and [18]. These will form the basis of the solutions with

O6-planes. They describe compactifications on an internal SU(3)-structure manifold down

to four dimensional AdS4. In section 3 we discuss the introduction of orientifold 6-planes

in supergravity, the issue of supersymmetry preserving configurations and how the original

solutions are modified by their presence. In particular, we present an exact “smeared”

solution in which the orientifold charge is smoothed out. Finally in section 4 moduli

stabilization is studied. We find that all the geometrical moduli are lifted at tree level

in supersymmetric vacua. Conventions, supersymmetry variations and SU(3)-structure

relations are relegated to some appendices.

We would also like to mention that Banks and van den Broek have also been studying

similar issues to those discussed here [19].

2. Massive type IIA supergravity on AdS4

Recently, a large class of supersymmetric four dimensional smooth compactifications of

massive Type IIA supergravity have been classified [18]. In this section we will briefly

review these solutions in order to set the notation for our results. Following this, we will

describe how the solutions are modified when O6-planes are added.

The massive IIA theory has bosonic fields consisting of a metric g, an RR 1 form

potential A (with field strength F ) and 3-form potential C (with field strength G), a NSNS

2-form potential B (with field strength H) and a dilaton φ.

We are interested in the ten dimensional description of the supersymmetric vacua with

non-zero cosmological constant discussed by de Wolfe et al from an effective field theory
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point of view in [1]. Therefore, without loss of generality, we can take the ten dimensional

spacetime to be a warped product AdS4 ×∆ X6, where X6 is a compact manifold and the

ten dimensional metric is given by

gMN (x, y) =

(

∆2(y)ĝµν(x) 0

0 gmn(y)

)

, (2.1)

where x and y are coordinates for AdS4 and X6 respectively and the warp factor is ∆.

All the fluxes have non-zero y-dependent components only along the compact directions,

except for G which has a non-zero four-dimensional component

Gµνρσ =
√

g4f(y)εµνρσ , (2.2)

and f is a function on X6. These assumptions are dictated by local Poincaré invariance on

AdS4.

N = 1 SUSY in four dimensions implies that the compact manifold X6 has a globally

defined spinor, η. As a consequence, the structure group of X6 reduces (at least) to SU(3).

As usual, the existence of the spinor η implies the existence of a globally defined 2-form J

and 3-form Ω:

Jmn ≡ iη†−γmnη− = −iη†+γmnη+ (2.3)

Ωmnp ≡ η†−γmnpη+ Ω∗
mnp = −η†+γmnpη− , (2.4)

With these properties J and Ω completely specify an SU(3)-structure on X6. J defines

an almost complex structure with respect to which Ω is (3, 0). From the SU(3) decomposi-

tion of their differentials dJ and dΩ, one can read off the torsion classes which characterize

the SU(3)-structure:

dJ = −3

2
Im(W1Ω

∗) + W4 ∧ J + W3

dΩ = W1J ∧ J + W2 ∧ J + W∗
5 ∧ Ω

(2.5)

By requiring the fluxes to preserve precisely N = 1 SUSY in four dimensions, the ten

dimensional supersymmetry parameter has to be of the form [2]:

ε = ε+ + ε−

= (αθ+ ⊗ η+ − α∗θ− ⊗ η−) + (βθ+ ⊗ η− − β∗θ− ⊗ η+) .
(2.6)

Here θ+ and θ− (with θ̄+ = θT
−C) are the two Weyl spinors on AdS4, satisfying the Killing

spinor equations

∇̂µθ+ = Wγ̂µθ− ∇̂µθ− = W ∗γ̂µθ+ , (2.7)

where W is related to the scalar curvature R̂ of AdS4 through R̂ = −24|W |2. On the other

hand, η+ and η− are chiral spinors on X6 related by charge conjugation, so that ε is a

Majorana spinor.
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By substituting this ansatz in the SUSY equations δΨM = 0, δλ = 0, Lust and Tsimpis

find the following solutions:1

If |α| 6= |β|, one gets the usual Calabi-Yau supersymmetric compactification, i.e. X6

is a Calabi-Yau manifold, all the fluxes vanish and W = 0, so the four dimensional space

is Minkowski.

If |α| = |β|, one can, without loss of generality, choose α = β and:

F =
f

9
e−φ/2J + F̃

H =
4m

5
e7φ/4

ReΩ

G = fdVol4 +
3m

5
eφJ ∧ J

W = ∆

(

α

|α|

)−2

(−1

5
m e5φ/4 +

i

6
f eφ/4)

φ,∆, f,Arg(α) = constant .

(2.8)

Here F̃ is the 8 component in the SU(3) decomposition of F (see appendix A) and it is

not determined by supersymmetry. On the other hand, by imposing the Bianchi identities,

one finds a contraint on its differential:

dF̃ = − 2

27
e−φ/4

(

f2 − 108

5
m2 e2φ

)

ReΩ . (2.9)

From the last equation one can in particular compute:

|F̃ |2 =
8

27
e−φ

(

f2 − 108

5
m2 e2φ

)

(2.10)

f2 ≥ 108

5
m2 e2φ . (2.11)

The further non-trivial constraint one gets from the Bianchi identities is |α| = constant.

Note that the Bianchi identities are crucial to obtain a solution of all the equations of

motion.

From these results we can obtain a characterization of the SU(3) structure of these

backgrounds:

dJ =
2

3
feφ/4

ReΩ

dΩ = −4i

9
feφ/4J ∧ J − i e3φ/4J ∧ F̃ ,

(2.12)

Thus, the nonvanishing torsion classes of X6 are:

W−
1 = −4i

9
feφ/4

W−
2 = −ie3φ/4F̃

(2.13)

1The 10 dimensional action, the supersymmetry variations and the conventions are set in the appendix A.
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A manifold with such an SU(3) structure is a special case of a so-called half-flat manifold.

(Compactifications on half-flat manifolds are considered in [15, 16, 20]).

From these results we can see that the only Calabi-Yau solution (which has zero torsion)

is the standard one with zero fluxes and zero cosmological constant. The only other special

class of solutions which can be considered have W−
2 = 0 (because of 2.11). This requires

f2 = 108
5 m2e2φ. These manifolds are called nearly-Kähler, and solutions of this kind were

obtained in [17].

3. IIA supergravity with orientifolds

Our main result will be the ten dimensional description of the vacua discovered in [1] (an

example of such vacua is also given in [21]). Since these vacua must also have O6-planes

we need to understand how the solutions of [18] change in the presence of the O6 . The

O6-plane is not a genuine supergravity object, but rather something defined by the super-

string compactification. Nevertheless, the supergravity action can be enriched with terms

that describe the interactions of such an object with the low energy fields.

In IIA string theory, an orientifold 6-plane is obtained by modding out the theory by

the discrete symmetry operator O:

O ≡ Ωp(−1)FLσ∗ (3.1)

where Ωp is the world-sheet parity, (−1)FL is the left-moving space-time fermion number,

while σ is an isometric involution of the original manifold. The fixed point locus of σ is

the orientifold 6-plane. In type IIA String Theory an O6-plane is a BPS object, which

preserves half of the supersymmetries: those such that ε± = O ε∓, where ε± are the two

Majorana-Weyl supersymmetry parameters (2.6).

We are going to add an O6-plane parallel to the AdS4 factor, so three-dimensional in

the internal manifold. Since the background preserves only four supercharges, in general

an O6-plane will break all of them. On the other hand, in order to get an N = 1 four

dimensional theory, we must take the O6 such that it preserves the same supercharges as

the background. As in the case of a D6-brane, this is achieved by wrapping the plane on

a supersymmetric 3-cycle.

The operator O does not act on the four dimensional spinors θ± while it exchanges η+

and η−.2 Thus

Jmn = −iη†+γmnη+
σ∗

−→ −iη†−γmnη− = −Jmn (3.2)

Ωmnp = η†−γmnpη+
σ∗

−→ η†+γmnpη− = −Ω∗
mnp (3.3)

Supersymmetry forces σ to be antiholomorphic with respect to the almost complex struc-

ture J .

2Note that Ωp(−1)FL acts trivially on the supersymmetry parameters, since they have the same parity

properties of the metric.
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The fixed locus of the isometry σ (if any) on the internal manifold is the supersymmetric

3-cycle Σ the O6 wraps. In particular, we get for the pull-back to the plane:

J |Σ = 0 ReΩ|Σ = 0 , (3.4)

which implies

J ∧ δ3 = 0 ReΩ ∧ δ3 = 0 . (3.5)

The 3-form δ3, localized on the 3-cycle Σ, is defined in (3.14). Moreover Ω is a calibration

and Σ is calibrated with respect to − Im Ω. In fact one can compute

∫

Σ
Im Ω =

∫

Im Ω ∧ δ3 = −
∫

δ(3)(Σ)
√

gt
3

dVol6 = −VolΣ . (3.6)

These indeed show that Σ is a supersymmetric 3-cycle (in fact special Lagrangian) [22].

One obtains the spatial parity of the other form fields by considering their worldsheet

origin and imposing them to be invariant under the orientifold operator (3.1): so, under

σ∗, F and H are odd as δ3, G is even.

Now consider the modifications to the equations of motion (EOM) and the Bianchi

identities (BI) given by the O6-plane to Type IIA massive supergravity. The bosonic action

is, at leading order in α′:

SO6 = 2µ6

∫

O6
d7ξe3φ/4√−g7 − 4µ6

∫

O6
C7 , (3.7)

where the first piece comes from the Born-Infeld action, the second one from the Wess-

Zumino’s.3 Moreover g7 is the pulled-back metric determinant on the plane, µ6 = 2κ2
10µ̄6 =

2π
√

α′, while µ̄p = (2π)−pα′−(p+1)/2 is the Dp-brane charge and tension, and we have taken

into account that the charge of an Op-plane is −2p−5 times that of a Dp-brane.

These terms are only the first ones in an infinite expansion in α′. Keeping just them

and working with the leading supergravity action (A.1) is consistent. In N = 2 10d

supergravity theories, the first corrections coming from string theory are of order α′3R4,

where R4 stands for various contractions of four Rienmann tensors, to be compared to the

leading term R.4 The orientifold leading action is instead of order
√

α′. Classical solutions

will be reliable only in regions where α′R ¿ 1.

The Born-Infeld term gives a contribution to the Einstein and dilaton equations, while

the Wess-Zumino term represents an electric coupling to C7. The Born-Infeld term brings

a localised contribution to the energy momentum tensor

T loc
MN ≡ − 2√−g

δSO6

δgMN
= 2µ6 e3φ/4 ΠMN

δ(3)(O6)
√

gt
3

, (3.8)

3This action is directly derived from the one of a D6-brane noticing that the orientifold projection forces

B to vanish on the plane, and O-planes do not support gauge fields.
4For N = 1 10d theories the first corrections are of order α′R2.
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where ΠMN is the projected metric on the plane and gt
3 = g10/g7 is the determinant of the

transverse metric. In case of a warped product metric as in (2.1) and for a submanifold

wrapping the four-dimensional factor, Πµν = gµν .

The equations of motion are5

0 = RMN − 1

2
∂Mφ∂Nφ − 1

12
eφ/2GM · GN +

1

128
eφ/2gMNG2

− 1

4
e−φHM · HN +

1

48
e−φgMNH2 − 1

2
e3φ/2FM · FN +

1

32
e3φ/2gMNF 2

− 1

4
m2e5φ/2gMN − µ6e

3φ/4ΠMN
δ(3)(O6)

√

gt
3

+
7

8
µ6e

3φ/4gMN
δ(3)(O6)

√

gt
3

(3.9)

0 = ∇2φ − 1

96
eφ/2G2 +

1

12
e−φH2 − 3

8
e3φ/2F 2 − 5m2e5φ/2

+
3

2
µ6e

3φ/4 δ(3)(O6)
√

gt
3

(3.10)

0 = d(eφ ∗ H) − 1

2
G ∧ G + eφ/2F ∧ ∗G + 2me3φ/2 ∗ F (3.11)

0 = d(eφ/2 ∗ G) − H ∧ G . (3.12)

Here XM ·XN means contraction on all but the first index. Notice that the only equations

that get modified with respect to [18], due to the presence of an orientifold plane, are the

Einstein and dilaton equations.

The Wess-Zumino term in (3.7) describes the coupling of the plane to C7, which is the

gauge potential dual to A, and so the O6 is a magnetic source for A. This term does not

modify the equations of motion, but only the Bianchi identity. The way this modification

can be evaluated is taking the dual description in terms of F8, so that the BI is obtained

by varying with respect to C7. We obtain

dF = 2mH − 2µ6 δ3 dH = 0 . (3.13)

The other BI dG = F ∧ H is satisfied.6

In the derivation it has been convenient to express integrals on the plane as integrals

on the whole space, through the 3-form δ3, transverse to the plane and localized on it:

∫

O6
C7 =

∫

C7 ∧ δ3 . (3.14)

In local coordinates yM , where the O6-plane is located ad y7 = . . . = y9 = 0, we have

δ3 = δ(3)(y7, y8, y9) dy7 ∧ dy8 ∧ dy9 expressed through a usual delta function. Notice the

closure

dδ3 = 0 , (3.15)

5Remember: Fp
2 = p!|Fp|

2. Moreover the equation of motion for A is given by the differential of (3.11).
6Looking at the complete Wess-Zumino term for a D6-brane, one could have suspected a localized

modification to the BI for G like δ3 ∧ F . But the orientifold projection forces the pull-back of F on the

plane to vanish. This would not necessarily be true for D-6-branes.
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which means nothing more than charge conservation. A precise treatment of distributional

forms would be to consider the embedding of a seven dimensional manifold M7 into the

target space f : M7 → Z, so that
∫

M7
f∗C7 is a nondegenerate linear map from 7-forms

to real numbers. The Poincaré dual to f(M7) is now, by definition, an object δ3 which

realizes (3.14) as a linear map on 7-forms. It turns out that the differential dδ3 is defined

by
∫

C6 ∧ dδ3 = −
∫

∂M7
f∗C6 on 6-forms. In our case the O6-plane has no boundary, hence

closure.

Summarizing, the introduction of the O6-plane does not modify the SUSY variations

in (A.6); it changes the Bianchi identity for the 2-form field-strength and induces some

additional terms in the Einstein and dilaton equations of motion.

In order to find the new solution, we follow the same procedure as in [18], i.e. we solve

the SUSY equations δψM = 0 and δλ = 0, and then we impose BI’s and EOM’s for form

fields. In fact, one can show that the Einstein and dilaton equations are automatically

satisfied (a part from the minor requirement on the Einstein equation E0M = 0 for M 6= 0,

which is granted with the ansatz (2.1)). We will partly verify it in the appendix B.

The system of relations (2.8) solve also the form field equations (3.11), (3.12) and

the BI for G. So we are left with only the modified BI for F (3.13).Substituting the

solution (2.8) into the modified BI and using the expression (2.12) for dJ , one gets

dF̃ = − 2

27
e−φ/4

(

f2 − 108

5
m2e2φ

)

Re Ω − 2µ6 δ3 . (3.16)

From this we can compute |F̃ |2. Start from 0 = d(Ω∧ F̃ ), use again (2.10) and (3.6) to get

|F̃ |2 =
8

27
e−φ

(

f2 − 108

5
m2e2φ

)

+ 2µ6e
−3φ/4 δ3(Σ)

√

gt
3

. (3.17)

The first term is constant on X6, while the second one has support on the cycle Σ. |F̃ |2 is

positive definite, so we find two conditions:

f2 ≥ 108

5
m2e2φ and µ6 ≥ 0 . (3.18)

Note that the latter is perfectly expected: changing the sign of the charge of the O6-plane

gives an anti-O6-plane, which however preserves orthogonal supersymmetries incompatible

with the background. The discussion of the possibility of getting a Calabi-Yau geometry is

parallel to section 2. One would have to put f and F̃ to zero, but this would also imply m

vanishing. The massless limit has to be taken with care, and one finds Calabi-Yau without

flux. Moreover, as long as the localized contribution is present, there will always be a

singular behavior on it, captured by (2.12).

3.1 A smeared solution

To find exact solutions in presence of localized objects is not easy, mainly because, as we

saw, in no case with non vanishing mass parameter does the geometry reduce to Calabi-Yau.
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Nevertheless, as a first step, we can consider a long-wavelength approximation in which

this situation is realized. In a Calabi-Yau metric the torsion classes vanish:

f = 0 F̃ = 0 F = 0 m2 > 0 . (3.19)

In the long-wavelength approximation the charge of the orientifold plane, localized on Σ,

is substituted with a smeared distribution (obviously keeping the total charge the same).

Thus the 3-form describing the new charge distribution must be in the same cohomology

class as δ3. Integrating the Bianchi identity (3.13) on 3-cycles gives the tadpole cancellation

conditions. Actually, requiring F = 0 and imposing the supersymmetry equation for H

(2.8) implies the smeared charge distribution to be:

µ6 δsmeared
3 =

4m2

5
e7φ/4

ReΩ . (3.20)

Direct inspection of (3.16) shows that in fact we can consistently put f and F̃ to zero.

Requiring the further condition that the total charge of the O6 is actually µ6, one gets

a relation for the value of the dilaton:

4m2

5
e7φ/4 =

µ6√
4Vol6

. (3.21)

This fixes also the value of the four-dimensional cosmological constant. Summarizing, the

solution is completely described by the internal Calabi-Yau manifold defined by SU(3)-in-

variant forms J and Ω, with an anti-holomorphic isometrical involution σ: the background

fields G and H are determined by (2.8) with f = 0, F = 0; the dilaton is given by (3.21)

where in turn the volume is set by J . Further constraints come from the integral quantiza-

tion of fluxes, and this mechanism provides the stabilization of geometrical moduli in the

geometry. Thus J and Ω are (completely) determined by the integer fluxes. This will be

analyzed in the next section.

It would be of interest to establish in even more detail how the smeared and localised

exact solutions are related.

3.2 Tadpole cancellation and topology change

In the exact localised solution, the fact that ReΩ is exact implies that H must be exact.7

The most important consequence is that the modified BI implies that mH−∑

i µ6δ
(i)
3 must

vanish in cohomology; here i runs over all the localized sources. Therefore from the tadpole

cancellation conditions one gets that the possible configurations of localized charges are

constrained: charge cancellation must work among localised charges only. Specifically, it

must be that:
∫

∑

i

δ
(i)
3 = 0 (3.22)

7Actually the exact forms are eφ/4
ReΩ and e−3φ/2H (as one reads from the equations (2.8) and (2.12)).

But φ is constant.
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on all closed 3-cycles. This is different from the smeared CY solution (in which f = 0),

where a non-trivial closed H was allowed by the supersymmetry equations and could be

used to cancel the O6 charge.

In the case of a single source we see that δ3 is exact. Since δ3 is the Poincare dual

of the homology class of the O6-plane, we learn that the 3-cycle that the O6-plane wraps

is contractible. This is in stark contrast to the smeared Calabi-Yau case in which the

O6-plane is necessarily non-trivial in homology. Therefore, we learn that the transition

from the Calabi-Yau approximation to the exact solution necessarily involves a topology

change.

4. Moduli stabilization

In this section we will describe from the point of view of ten dimensional supergravity,

how the introduction of the fluxes stabilise the moduli which are present in the zero flux,

Calabi-Yau limit. After a brief general discussion, we will first discuss the moduli vevs in

the examples studied in [1] and then go on to discuss the general case.

We begin with the axions. A background value for the field strength of a gauge form

potential can be separated in two pieces:

H = Hf + dB . (4.1)

The former, cohomologically nontrivial, when integrated on cycles gives the integer amounts

of flux, whilst the second term is globally exact. Hf must be closed (so that the flux de-

pends only on co-homology), and we can choose an harmonic representative of the integral

cohomology class. Note however that this separation is arbitrary. From the exact solution

the total field strength H is harmonic so that dB = 0. We can then use the gauge freedom

B → B + dλ to choose B harmonic. The internal harmonic components of B are four

dimensional axions. This shows that all the other Kaluza-Klein modes have a zero vacuum

expectation value and are hence massive.

In the same way, we split the other field-strengths:8

F = F f + dA + 2m B (4.2)

G = Gf + fdVol4 + dC + B ∧ dA + mB2 . (4.3)

Arguing as before, F f is the integrally quantized flux of the gauge potential A while Gf is

the flux of C; all of them can be taken harmonic exploiting the gauge redundancy. Note

that being A harmonic, it is actually vanishing on our Calabi-Yau solution because of the

vanishing of H1(CY, R).

So one simply expands the fluxes (quantized), the gauge potentials and the SU(3)-

structure forms defining the metric. The right basis is dictated by the exact solution, and

by the constraints imposed by the orientifold projection. In the special example at hand,

8Notice that the field strengths F and G are not automatically closed. They are indeed closed in the

smeared solutions we are considering, as it turns out from the BI’s (3.13).
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everything is harmonic. On the other hand, we can only study the vacuum and can not go

off-shell, so can not see any superpotential.

In order to discuss the stabilization of axions coming from C, we need to consider

the BI for F̃6 ≡ eφ/2 ∗E G, or equivalently the EOM (3.12). Splitting the field strength

according to (4.1) and (4.3) and recalling that A = 0 one can recast it in the form of an

exact differential:

d
(

eφ/2 ∗ G + H ∧ C − B ∧ Gf − 1

3
m B3

)

= 0 . (4.4)

When f 6= 0, C must contain also a four-dimensional piece CM such that dCM = fdVol4.

Being a BI, the term in parenthesis is recognized as the closed component of F̃6, which can

be further split into flux and an exact piece:

F f
6 + dC5 = eφ/2 ∗ G + H ∧ C − B ∧ Gf − 1

3
m B3 . (4.5)

4.1 Example: the T 6/(Z3)
2 orientifold

The smeared solution in the long-wavelength approximation can be exploited to compare

results with another widely used approximation: what is called Calabi-Yau with fluxes.

In the latter, one keeps the contribution of fluxes small compared to the curvature of

the compactification manifold. Note that fluxes can not be taken arbitrarily small; Dirac

quantization condition puts a lower bound Fp ∼ (α′)
p−1

2 to the amount for a p-field-

strength. So one requires the contribution of fluxes to the action to be small compared to

the Einstein term R, which is of order L−2 with respect to the characteristic length of the

manifold. This gives (α′/L2)p−1 ¿ 1. In other words, we must be in the limit of large

compactification manifold with respect to the string length, which anyway is the regime of

applicability of supergravity. Under these conditions, one can neglect the backreaction of

fluxes on geometry, and work with the Calabi-Yau metric. Of course one has to be careful

to remember that in the action there are factors of the dilaton, and both the dilaton and

the volume are (possibly) determined by fluxes themselves, so it is not always possible to

keep the fluxes to their minimal amount while increasing the volume. On the other hand,

the smeared solution is valid for large flux.

A simple example studied in detail by [1] is the T 6/Z3
2 orientifold and will be useful

as a concrete model. The model is constructed by compactifying Type IIA supergravity on

a 6-manifold which is (the singular limit of) a Calabi-Yau: a torus T 6 firstly orbifolded by

Z3
2 and then orientifolded. It has Hodge numbers h2,1 = 0 and h1,1 = 12, where 9 of the 12

Kähler moduli arise from the blow-up modes of 9 Z3 singularities. There are no complex

structure moduli. The O6-plane wraps a special Lagrangian 3-cycle and is compatible with

the closed SU(3)-structure of the CY. The resulting theory has 4 preserved supercharges.

The number of moduli from the form fields are: 3 from the NS-NS 2-form potential B (odd

under σ), no one from the R-R 1-form potential A and 1 from the R-R 3-form potential C

(even). Fluxes are switched on as described above.

In [1] the stabilization of the moduli, due to the fluxes, is analysed by a computation

of the four dimensional effective moduli potential. We are going to apply to this model the

machinery previously developed, in the long-wavelength approximation.
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Let us introduce an integer basis of harmonic forms for the even cohomology groups.

The 2-forms (odd under σ) wi:

wi ∝
i

2
dzi ∧ dz̄i

∫

w1 ∧ w2 ∧ w3 = 1 . (4.6)

The 4-forms (even under σ)

w̃i = wj ∧ wk ⇒
∫

wa ∧ w̃b = δb
a (4.7)

where j and k are the two values of 1, 2, 3 besides i.

Start with the decomposition of F (4.2). Expand the fields on harmonic forms (of

correct parity)

F f = f i wi B = bi wi , (4.8)

where f i are quantized in units of µ6. Imposing the smeared solution F = 0, we get

bi = − f i

2m
. (4.9)

The “moduli”9 bi corresponding to four dimensional axions are fixed by the fluxes f i. We

can take for simplicity F f = 0, as in [1], then B = 0 and the axions are fixed to bi = 0.

The general case is dealt with in the next section.

Then expand the 4-form flux G and the SU(3)-structure fundamental form

Gf =
∑

i

ei w̃i (4.10)

J = e−φ/2
∑

i

vi wi vi > 0 , (4.11)

where ei are quantized in units of µ4, and we put a power of the dilaton for later convenience.

Note in particular

v1v2v3 = e3φ/2 Vol6 = VolString frame
6 . (4.12)

Substituting into the decomposition of G (4.3) and in the solution (2.8) with f = 0 and

bi = 0, we get
6m

5
vjvk = ei , (4.13)

where, as before, j and k are the two values of 1,2,3 besides i.

We find a series of relations on the possible fluxes that characterize a supersymmetric

vacuum: Sgn(m e1e2e3) = Sgn(m ei) = + and the sign of ei is independent on i. These are

in agreement with [1]. Moreover we can invert to

vi =
1

|ei|

√

5

6

e1e2e3

m
. (4.14)

9We call them moduli because they are so in the Calabi-Yau compactification without fluxes, but here

the exact solution fixes completely B, and so there are no moduli at all.

– 12 –



J
H
E
P
0
2
(
2
0
0
7
)
0
1
8

So the Kähler moduli are fixed. In the more general case bi 6= 0 they are still fixed, apart

from changing the range of fluxes for which the supergravity approximation is reliable.

The stabilization of the dilaton comes from the decomposition of H (4.1). Expand

H in a basis of harmonic forms for the third cohomology group, odd under the spatial

orientifold operation σ∗. In the present example there is only ReΩ. Note that this is

consistent with the solution (2.8). So let us put

H = Hf = p
1√

4Vol6
Re Ω . (4.15)

The normalization comes from
∫

Γ δsmeared
3 = 1 , so p is integrally quantized in units of µ5.

Integrating the BI for F on the cycle Γ we get the only nontrivial tadpole cancellation

condition ∫

Γ
m H = m p = µ6 (4.16)

whose only two solutions are10 (m, p) = ±(µ8/2, 2µ5) and ±(µ8, µ5). Comparing with the

solution, the dilaton gets stabilized to

eφ =
3

4
µ6

(

5

6

1

m5 e1e2e3

)1/4

. (4.17)

The last issue is the stabilisation of possible axions coming from the 3-form potential

C. Being it odd under σ∗ and harmonic, there is only one axion:

C = −ξ
Im Ω√
4Vol6

. (4.18)

This must be substituted into the decomposition of the field-strength F̃6 dual to G (4.5),

with quantized flux
∫

F f
6 = e0. We get:

−p ξ = e0 (4.19)

The result is that, in this simple model, all the Kähler moduli, the dilaton and the

only axion are geometrically stabilized, whilst there are no complex structure moduli. All

the results found in this section are in precise agreement with those found in [1]. Really

one should discuss the moduli associated to the 9 resolved singularities as well, which are

one Kähler modulus each. One would find that the singularities are blown up to a finite

volume. In the next section will discuss how this example generalizes to any Calabi-Yau,

of which the orbifold is just a singular limit.

We can determine also the four-dimensional cosmological constant, that is the vacuum

energy in AdS4. The exact solution (2.8) gives the scalar curvature R̂ = −24|W |2 of the

AdS4 factor in ten dimensional Einstein metric (note that the constant ∆ cancells out).

Then we must express it in four dimensional Einstein frame, through

R4DE = M2
P κ2

10

1

Vol6
R̂ = −24

25
M2

P κ2
10m

2 e5φ/2

Vol6
. (4.20)

10Note, in quantizing m, that it is not canonically normalized in the action (A.1); then it is quantized in

units of µ8/2.
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Eventually, choosing conventions for the Einstein equation Rµν − 1
2gµνR = −1

2gµνΛ:

Λ = −(2π)11
(

3

4

)4 (

6

5

α′4

m e1e2e3

)3/2

M2
P . (4.21)

4.2 General Calabi-Yau with fluxes

The generalization of this example to any Calabi-Yau model with an orientifold projection

is straightforward. We will continue to adopt the long-wavelength approximation as done

in the previous section. First of all the antiholomorphic involutive isometry σ divides the

cohomology groups of the internal manifold into even and odd components. In particular,

H1,1 = H1,1
+ ⊕ H1,1

− with dimensions h1,1 = h1,1
+ + h1,1

− . Let {wi} be an integer basis for

H1,1
− , with intersection numbers

κabc =

∫

wa ∧ wb ∧ wc , (4.22)

and {w̃i} the dual basis for H2,2
+ (since J3 is odd):

∫

wi ∧ w̃j = δj
i . (4.23)

The third cohomology group H3 = H3
+ ⊕ H3

− is halved in two spaces of real dimension

h2,1+1. We consider an integer symplectic real basis for H3: {αK , βL} with k, l : 0, . . . , h2,1.

It satisfies
∫

αK ∧ βL = δL
K ; moreover αK are even under the projection σ∗ while βL are

odd. Let the Poincaré dual basis of integer cycles be {ΣA,ΓB} so that ΣA ∩ ΓB = δB
A . It

satisfies
∫

ΣA
αK = δA

K ,
∫

ΓB βL = δL
B while the other vanishing. The orientifold homology

class Σ will be a combination of ΣA’s.

Then we expand the various fields and forms on these basis, according to their behavior

under the orientifold operation O. The Kähler form J , the field B and the flux F f are odd

and follow (4.11), (4.8).11 In particular

Vol6 =
1

6
e−3φ/2 vavbvc κabc . (4.24)

The flux Gf is even and follows (4.10). The treatment of the holomorphic 3-form needs a

little bit more of care. On a Calabi-Yau it can be expanded on the full H3:

Ω = gKαK + ZLβL . (4.25)

We can take ZL as projective coordinates on the complex structure moduli space of the

Calabi-Yau, while gK as functions of ZL on this space. Nonetheless, we choose the particu-

lar normalization Ω∧ Ω̄ = −8idVol6, and this fixes the overall factor. Then the orientifold

projection requires ReΩ and Im Ω to be respectively odd and even under σ; this translates

to

Im ZL = Re gK = 0 . (4.26)

11A possible axion coming from B lying on the four dimensional space is forbidden by the orientifold

projection.
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Notice that while the first set of relations really cuts out half of the moduli space, the

second set is automatically guaranteed on a CY manifold which admits the antiholomorphic

isometry σ. The flux Hf is odd and the gauge potential C is even, so

H = Hf = pLβL C = ξKαK . (4.27)

The stabilization proceeds on the same track as before. We substitute the expantions

given above in the equations determining the solution. From (4.2) and (4.3) we get

bi = − f i

2m
(4.28)

3m

5
vivj κija = ea + m bibj κija . (4.29)

The axions bi are all fixed, as well as the Kähler moduli vi. For these last ones we have

as many quadratic equations as unknowns (provided that there is no a such that κaij is

always zero), and, as pointed out in [1], one has only to check that the solution lies in the

supergravity regime (among the others, one asks for large positive volumes vi). Integrating

the BI for F on the cycles ΓL yields

m pL = µ6
ReZL√
4Vol6

. (4.30)

This fixes all the remaining complex structure moduli12. Then subsituting in the solution

(2.8) we find the dilaton

eφ =
5

8

µ6

m2

√

6

vavbvc κabc
. (4.31)

Eventually, by direct application of (4.5) follows

−pL ξL = e0 + biei +
1

3
m babbbc κabc . (4.32)

Note that only this particular combination of the axions can be fixed, while for the other

ones non-perturbative effects and α′ corrections must be invoked. Anyway, the stabilization

of axions is a minor problem, because their configuration space is periodic and compact,

so any contribution which generate a nonconstant potential fixes them at a finite value.

As noted in [1], there is a gauge redundancy in the solutions described above, i.e.

solutions which are transformed into each other by the gauge transformations (A.3) and

following, are equivalent. In the four-dimensional low energy theory those translate in

Peccei-Quinn symmetries that shift the axions:

bi → bi + 1 or ξK → ξK + 1 . (4.33)

These are accompanied by translations of the fluxes, and the correct transformation rules

are obtained by (4.2), (4.3) ,(4.5) by noticing that F , G and F6 are gauge-invariant. The

12The equations are not invariant under scaling (what one would have expected for the projective coor-

dinates), but this relies on the fact that a normalization for Ω is chosen, for example in (C.6).
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point is that one can always reduce to the case of bi and ξK of order unity, and the large

volume limit (the one reliable in supergravity) is controlled just by the fluxes ei. This

simplifies considerably the equations in the limit.

As in the particular case studied in the previous section, we have found the same

results as [1]: all the geometric moduli and the axions coming from B are fixed, whilst only

one combination of the C axions is fixed.
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A. Ten dimensional action and supersymmetry variations

The bosonic action of the Type IIA massive supergravity [23] with mass parameter13 m is

given, in Einstein frame, by14

L =

∫

{

R ∗ 1 − 1

2
dφ ∧ ∗dφ − 1

2
eφ/2G ∧ ∗G − 1

2
e−φH ∧ ∗H

− 1

2
e3φ/2F ∧ ∗F − 2m2e5φ/2 ∗ 1 +

1

2
dC2 ∧ B +

1

2
dC ∧ dA ∧ B2

+
1

6
dA2 ∧ B3 +

m

3
dC ∧ B3 +

m

4
dA ∧ B4 +

m2

10
B5

}

, (A.1)

where the invariant field strength with their BI’s are:

F = dA + 2mB

H = dB

G = dC + B ∧ dA + mB2

dF = 2mH

dH = 0

dG = F ∧ H .

(A.2)

The gauge transformations which leave the action invariant are:

δA = mΛ1 δB = −1

2
dΛ1 δC =

1

2
A ∧ dΛ1 +

1

4
mΛ1 ∧ dΛ1 , (A.3)

as well as δA = dΛ0 and δC = dΛ2.

For a canonically normalized field-strength, the Dirac quantization condition states

∫

Σp

Fp = µ8−pnp = (4π2α′)
p−1

2 np np ∈ Z , (A.4)

13In string theory, this parameter is really a flux F0, in fact quantized.
14In order not to clutter formulas, we omit a factor 1/2κ2

10 = (2π)−7α′−4 in front of the lagrangian. But

to discuss the supergravity limit and the various orders in α′, this term has to be taken into account, and

not just put to one.
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with µp = 2κ10
2µ̄p = (4π2α′)(7−p)/2, and µ̄p = (2π)−pα′−(p+1)/2 is the Dp-brane charge

and tension.

The condition for a background to be supersymmetric, is that it satisfies the equations

δΨM = 0 and δλ = 0 (A.5)

where

δΨM =

[

∇M − m e5φ/4

16
ΓM − e3φ/4

64
FNP (ΓM

NP − 14δM
NΓP )Γ11

+
e−φ/2

96
HNPQ(ΓM

NPQ − 9δM
NΓPQ)Γ11

+
eφ/4

256
GNPQR(ΓM

NPQR − 20

3
δM

NΓPQR)

]

ε

(A.6)

δλ =

[

− 1

2
ΓM∇Mφ − 5m e5φ/4

4
+

3 e3φ/4

16
FMNΓMNΓ11

+
e−φ/2

24
HMNP ΓMNP Γ11 −

eφ/4

192
GMNPQΓMNPQ

]

ε

(A.7)

In order to solve this, one substitutes the ansatz for ε (2.6), for the metric and for the forms

and contracts the resulting six dimensional equations with η†±γ(n). In this way, one obtains

separate equations for every SU(3) representation in the decomposition of forms [18]: one

can decompose the tensors F , H and G in terms of irreducible SU(3) representations. For

example, for F one gets:

Fmn =
1

16
Ω∗

mn
sF (1,0)

s +
1

16
Ωmn

sF (0,1)
s + (F̃mn +

1

6
JmnF (0)) , (A.8)

where the different pieces can be extracted through

F (0) = FmnJmn ∼ 1 F (1,0)
m = Ωm

npFnp ∼ 3 (A.9)

and F̃ ∼ 8 is such that

F̃mnJmn = F̃mnΩmn
p = F̃mn(Ω∗)mn

p = 0 . (A.10)

By different contractions one has a set of equations, and then recasting together the various

pieces one gets (2.8) (in case |α| = |β|).

B. Check of the equations of motion

In section 3 we sketched an argument to find that if the solution to the supersymmetry

equations satisfies also the BI and the equations of motions for the forms, then it satisfies

the Einstein and the dilaton equations as well. Here we check that it is true for the dilaton

and the 4-dimensional components of the Einstein equation.
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The dilaton eom (3.10) is the same as in [18], but with the addition of the O6 term.

Moreover, the fields take the same values on the solution as in [18], except for F . The

value of F 2 is the [18] one plus

δF 2 =
1

4
µ6

√−g3√−g6
δ3(Σ)e−3φ/4 . (B.1)

So if the [18] EOM are satisfied, all the terms in (3.10) sum up to zero, except for

−3

8
e3φ/2δ|F |2 +

3

2
µ6

√−g3√−g6
δ3(Σ)e3φ/4 . (B.2)

By substituting (B.1) into (B.2) one gets exactly zero and the dilaton EOM turns out to

be correct.

Consider, now, the Einstein EOM in the µ, ν = 0, . . . , 3 directions. The piece of the

equation which is not automatically zero if the [18] EOM are satisfied is:

1

32
e3φ/2gµνδ|F |2 − 1

8
µ6

√−g3√−g6
δ3(Σ)gµνe3φ/4 . (B.3)

Again the result is zero and the eom is satisfied.

C. SU(3) structure conventions

As said in the paper, the existence of the spinor η implies the existence of a globally defined

2-form J and 3-form Ω:

Jmn ≡ iη†−γmnη− = −iη†+γmnη+ (C.1)

Ωmnp ≡ η†−γmnpη+ Ω∗
mnp = −η†+γmnpη− , (C.2)

with the normalization η†+η+ = η†−η− = 1. J and Ω satisfy:

Jm
nJn

p = −δp
m (C.3)

(Π+)m
n
Ωnpq = Ωmpq (Π−)m

n
Ωnpq = 0 (C.4)

(Π±)m
n ≡ 1

2
(δn

m ∓ iJm
n) . (C.5)

So J defines an almost complex structures with respect to which Ω is (3, 0). Moreover

Ω ∧ J = 0 and J3 =
3i

4
Ω ∧ Ω∗ = 6dVol6 (C.6)

and

∗J =
1

2
J ∧ J ∗ (J ∧ J) = 2J ∗ Ω = −iΩ (C.7)

∗F̃ = −F̃ ∧ J ∗(F̃ ∧ J) = −F̃ (C.8)
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